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Control allocation deals with the problem of distributing a given control demand among an available set of
actuators. Most existing methods are static in the sense that the resulting control distribution depends only on
the current control demand. In this paper we propose a method for dynamic control allocation, in which the
resulting control distribution also depends on the distribution in the previous sampling instant. The method
extends regular quadratic-programming control allocation by also penalizing the actuator rates. This leads to a
frequency-dependent control distribution, which can be designed to, for example, account for different actuator
bandwidths. The control allocation problem is posed as a constrained quadratic program, which provides automatic
redistribution of the control effort when one actuator saturates in position or in rate. When no saturations occur,
the resulting control distribution coincides with the control demand fed through a linear filter.

Introduction

N recent years, nonlinear flight control design methods, like dy-

namic inversion'~* and backstepping,*> have gained increased
attention. These methods result in control laws specifying the mo-
ments to be produced in pitch, roll, and yaw, rather than which
particular control surface deflections to produce. How to transform
these virtual, or generalized, control commands into actual control
commands is known as the control-allocation problem. Figure 1
illustrates the resulting control configuration.

With a redundant actuator suite there are several combinations of
actuator positions, which all produce the same virtual control, and
hence give the same overall system behavior. This design freedom is
often used to optimize some static performance index, like minimum
control, or to prioritize among the actuators. This can be thought of
as affecting the distribution of control effect in magnitude among the
actuators. Regardless of method (optimization-based allocation,®~!°
daisy-chain allocation,''~!3 direct allocation,'®*13 etc.), the result-
ing mapping from the virtual control command v(¢) to true control
input u () can be written as a static relationship

u(t) = hlv(@)] M

A possibility that has been little explored is to also affect the
distribution of the control effect in the frequency domain and use
the redundancy to have different actuators operate in different parts
of the frequency spectrum. This requires the mapping from v to u
to depend also on earlier values of u and v; hence,

u(t)y=hlv@t),ut —T), vt —T),u(t—2T),v(t —2T),...] (2)
where T is the sampling interval. We will refer to this as dynamic
control allocation.

The term dynamic allocation was introduced in Ref. 16, which
considers control of marine vessels, equipped with azimuth (ro-
tatable) thrusters. Essentially, the authors use the low-frequency
component of the total thrust demand to decide the azimuth angles,
which are then used to compute the force to be produced by each
thruster.
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Some flight control examples where filtering has been intro-
duced in the control allocation can also be found in the literature.
Papageorgiou et al.'” consider a case where canards and tailerons
are available for pitch control. To achieve a fast initial aircraft re-
sponse and to make use of the fast dynamics of the canards, the
high-frequency component of the required pitching moment is fed
to the canards while the remaining low-frequency component is fed
to the tailerons, which are used solely at trimmed flight.

Another example can be found in Ref. 18, where thrust-vectored
control (TVC) is available. To prevent the TVC vanes from suffering
thermal damage from the jet exhaust, the TVC deflection command
is fed to a wash-out filter (static gain zero), so that the vanes do not
remain deflected on the exhaust for long periods of time.

In Ref. 19, rate saturation problems are used as a motivation
for dynamic control allocation, or frequency-apportioned control
allocation, as the authors call it. The high- and low-frequency com-
ponents of the moment demand are each multiplied by a weighted
pseudoinverse of the control effectiveness matrix B with the weights
based on the rate and position bounds of the actuators, respectively.
With this strategy, fast actuators are used for high-frequency control,
and the chances of rate saturation are reduced.

Hence, there are practical cases where dynamic control allocation
is desirable. In this paper, a new systematic method for dynamic
control allocation is proposed. The method is an extension of regular
quadratic-programming control allocation. The key idea is to add
an extra term to the optimization criterion to also penalize actuator
rates. When no saturations occur, the control-allocation mapping
becomes a linear filter of the form

u(t) = Fu(t —T)+ Gu(t) 3)
from the virtual control command v to the actuator commands u.
The frequency characteristics of this filter are decided by weighting
matrices selected by the control designer. Thus, unlike most previous
methods, no filters are to be explicitly constructed by the control
designer.

Two design examples are included to illustrate the potential ben-
efits of using the proposed scheme for dynamic control allocation.

Control-Allocation Problem Formulation
As stated in the Introduction, an important application of control
allocation is nonlinear flight control. Consider a general nonlinear
dynamical model of an aircraft given by

X = f(x,4) (4)

§ =g u (4b)
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Fig. 1 Control configuration when control allocation is used.

where x is the aircraft state vector, § the actuator positions, and u the
commanded actuator positions. To incorporate the actuator position
and rate constraints, we impose that

Smin =< ) = 6max» |6| = Srate (5)

where 8, and 8, are the lower and upper position constraints and
Srate Specifies the maximal individual actuator rates.

Even in the case when f and g are linear, it is nontrivial to design
a control law that gives the desired closed-loop dynamics while en-
suring that the actuator constraints are met. A common approach is
therefore to split the design task into two subtasks. Neglecting the
typically fast actuator dynamics, that is, assuming § = u, and view-
ing the actuators as pure moment generators yields the approximate
model:

x = fulx, M(x,u)] ©)

where M (x, u) is the mapping from the commanded actuator po-
sitions to the resulting aerodynamic moment acting on the aircraft
and fy describes how the aerodynamic moment affects the aircraft
dynamics.

The control design can now be performed in two steps. First,
design a control law in terms of the moment to be produced,

M(x,u) =k(r, x) (7)

that yields some desired closed-loop dynamics, where r is the pilot
command. Second, determine u, constrained by Eq. (5) (with § = u),
which satisfies Eq. (7).

The latter step is the control allocation step. Because modern
aircraft use digital control systems, it is reasonable to merge the
constraints (5) into an overall time-varying position constraint given
by

u(®) < u(t) <u) ®)

where
u(r) = max([Smin, u(t — T) — Srae T (9a)
U(t) = min[Smax, u(t — T) + Srue T (9b)

and T is the sampling time.!? To simplify the search for a feasible
solution to Eq. (7), we assume the aerodynamic moment to be affine
in the controls. With this, the equation to be solved for u becomes

M(x,u) = B(x)u + c(x) = k(r, x) (10)
or, equivalently,
Bu(t) = v(t) (11

where v(t) =k(r, x) — c(x) is the virtual control command com-
puted from the control law (7).

Now, to perform online control allocation we wish to determine, at
each sampling instant, a control command u(¢) that is feasible with
respect to the actuator constraints (8) and that satisfies Eq. (11), if
possible.

Dynamic Control Allocation

The dynamic control-allocation method that we propose can be
posed as a sequential quadratic-programming problem:

u(t) = argmin { [ Wi[u(t) — u; )1 + [Walu(t) — u(t — T)]|*}

u(t) e

(12a)

Q= argmin |W,[Bu(t)—v(®]| (12b)

u(r) u(r) <u(t)

where u € R" is the true control input; u; € R™ is the desired steady-
state control input; v € R¥ is the virtual control command; B € R *"
is the control effectiveness matrix; and W, W,, and W, are square
matrices of the proper dimensions. B is assumed to have full row
rank k, and ||-|| denotes the Euclidean 2-norm defined by |u| =
S u).

Equation (12) should be interpreted as follows: Given €2, the set of
feasible control inputs (with respect to position and rate constraints)
that minimize the virtual control error Bu(t)—v(¢) (weighted by W,)
pick the control input that minimizes the cost function in Eq. (12a).

Hence, satisfying the virtual control demand (11) has the highest
priority. When this is not possible because of the actuator constraints,
Eq. (12b) corresponds to solving Eq. (11) in the least-squares sense.
The design matrix W, can then be used to affect the way that com-
mand limiting is performed by weighting the virtual control errors
differently to prioritize certain components of v.

When there are several control inputs that give the same virtual
control error (not necessarily zero), that is, when €2 does not contain
only a single point, # is made unique by minimizing the criterion
in Eq. (12a). This criterion is a mix of 1) keeping the control input
close to the desired steady-state value u; and 2) minimizing the
change in the control input compared to the preceding sampling
instant. The tradeoff between these two requirements is governed
by the weighting matrices W, and W,. A large diagonal entry in W,
will make the corresponding actuator converge quickly to its desired
position, whereas a large W, entry will prevent the actuator from
moving too quickly. Note however that these weighting matrices
only affect the control input if u is not uniquely determined by
Eq. (12b). The following assumption certifies that the overall control
allocation problem (12) has a unique optimal solution.

Assumption 1: Assume that the weighting matrices W, and W,
are symmetric and such that

W= (W12+W22)% (13)

is nonsingular.

The symmetry assumption is no restriction because, if, for exam-
ple, W, is not symmetric, it can be replaced by the symmetric matrix
square root (W[ W;)!/2 without affecting the solution.

Equation (12) specifies which solution to the control-allocation
problem that is sought but not how to find it. To actually solve
the optimization problem, the two terms in Eq. (12a) can first
be merged into one term without affecting the solution. Then,
any quadratic-programming (QP) solver suitable for real-time
implementation®”-*2° can be used to find the solution. Because the
optimization problem (12) is to be solved at each sampling instant,
no variables need to be constant. This means that the control ef-
ficiency matrix B can be updated continuously, which allows for
reconfiguration after an actuator failure, and that different weight-
ing matrices can be used for different flight cases.

By including the preceding control input in the optimization prob-
lem (12), the resulting control distribution will clearly be a mapping
of the form

u(t) =hlv(@), u(t —T)] (14)

Despite the control allocator now being a dynamical system, no
extra lag is introduced into the control loop because minimizing the
virtual control error has top priority in Egs. (12).

Let us now investigate some characteristics of the discrete-time
dynamical system (14). In the following section we consider the
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nonsaturated case in which £ can be found analytically and investi-
gate the issues of stability and steady-state distribution.

Nonsaturated Case

If no actuators are saturated in the solution to Egs. (12), the ac-
tuator constraints can be disregarded, and the optimization problem
reduces to

min {[|Wi{u(®) = u, O + [ Walu() —ue = DI} (152)

subject to Bu(t) = v(t) (15b)
Explicit Solution

Having removed the actuator constraints, one can derive a closed
form solution to Egs. (15).

Theorem 1: Let assumption 1 hold. Then the control-allocation
problem (15) has the solution

u(t) = Eus(t) + Fu(t — T) + Gvu(1) (16)

where
E=(—-GBW?W? 17)
F=(-GBW?W; (18)
G=w'BwWhH (19)

Proof: 1t is straightforward to show that the cost function in
Eq. (15a) has the same minimizer as ||W[u(t) — uo(?)]||, where

W= (W12+W22)%, uo(t) = W[ Wiug(t) + Wiu(t = T)|

Now, adding the linear constraint (15b), where B has full row rank,
gives the weighted, shifted pseudoinverse solution
u(t) = (I — GB)uy(t) + Go(t), G=w'lBwhH

from which it follows that

u(t) = — GBYW W u,(t)
A
E
+ (I - GBYW2W}u(t —T) + Gu(t)

_—
F

which completes the proof. A more detailed proof can be found in
Ref. 21. O
The ¥ symbol denotes the pseudoinverse operator defined as?
BT =BT (BBT)~! for a k x m matrix B with full row rank k.
The theorem shows that the optimal solution to the control-
allocation problem (15) is given by the linear filter (16). The prop-
erties of this filter will be investigated in the two following sections.

Dynamic Properties

Let us first study the dynamic properties of the filter (16). Note
that the optimization criterion in Egs. (15) does not consider future
values of u(z). It is therefore not obvious that the resulting filter
(16) is stable. The poles of the filter, which can be found as the
eigenvalues of the matrix F, are characterized by the following
theorem:

Theorem 2: Let F be defined as in theorem 1, and let assumption
1 hold. Then the eigenvalues of F, A(F) satisty

0<A(F) =<1 (20)

If W, is nonsingular, the upper eigenvalue limit becomes strict, that
is,

0=A(F) <1 (1)

Proof: We wish to characterize the eigenvalues of

F=-GBW?W}

[ —w'BWH BIW?2W;
=W - BW Y BW W W? (22)

Let the singular value decomposition of BW~! be given by

T

BW'=UxVv! = U[Z, 0] [V’T} =Ux, V'
0

where U and V are orthogonal matrices and X, is a k x k diagonal
matrix with strictly positive diagonal entries (because BW~! has
rank k). This yields

I-BWHYBW ! =1-v,2'UTUS, V] =1-V, V] =W, V]

because VVT =V, V,T + Wy VOT = I. Inserting this into Eq. (22)
gives us

F=W'VVfw='w;

Now use the fact? that the nonzero eigenvalues of a matrix product
AB, Ay, (AB) satisty Ay, (AB) = A (BA) to get

I (F) = o (V§ W W W V)
From the definition of singular values, we get
MVE W WIW V) = o*(WaW'V,) = 0
This shows that the nonzero eigenvalues of F' are real and positive,
and, thus, AL(F) > 0 holds.

What remains to show is that the eigenvalues of F are bounded
by 1. To do this we investigate the maximum eigenvalue A(F).

ME) =32 (W) = [waw v |* < [waw ! | ivel?
Because
Vol = 2(Vy Vo) =1
——
1
we get

xTWIwiwlx

= w1 = sup T
X

Introducing y = W~ !x yields

Tw2 Tw2
Yy wry <Supy 2)’_1

X(F)gsupyrwzzyzsup e oI = e
y£O YVIWEY + ¥ Wyy o T Wyy

y£0 )’TWz})

because y' W2y = |[W;y|* > 0 for any symmetric W;. If W; is
nonsingular, we get y" Wiy =W, y||*>0 for y #0, and the last
inequality becomes strict, that is, L(F) < 1 in this case. O

The theorem states that the poles of the linear control-allocation
filter (16) lie between 0 and 1 on the real axis. This has two important
practical implications:

1) If W is nonsingular, the filter poles lie strictly inside the unit
circle. This implies that the filter is asymptotically stable, which
means that the actuator responses will be bounded for a bounded
virtual control command. If W, is singular, only neutral stability can
be guaranteed (although asymptotic stability might hold).

2) The fact that the poles lie on the positive real axis implies that
the actuator responses to a step in the virtual control input are not
oscillatory.
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Steady-State Properties

In the preceding section we showed that the control-allocation
filter (16) is asymptotically stable under mild assumptions. Let us
therefore investigate the steady-state solution for a constant virtual
control input.

Theorem 3: Let u, satisty

Bu, = vy (23)

where v(t) = vy is the desired virtual control input. Then, if W, is

nonsingular the steady-state control distribution of Eq. (16) is given
by

lim wu(t) = u,
1 — 00

24

Proof: If W, is nonsingular, the linear filter (16) is asymptoti-
cally stable according to Theorem 2. This means that in the limit
u(t) =u(t — T) holds. Then Egs. (15) reduce to

. 2
min || Wi (u — uy)||
u

subject to Bu = vy 25)
If u, satisfies Bu, = vg, then u = u is obviously one optimal solution
to Egs. (25). Further, if W, is nonsingular, u =u, is the unique
optimal solution. O

Because u, can be time varying in Egs. (12), the theorem condition
(23) can be fulfilled by selecting u,(¢) = Sv(t), where BS = I. For
example, selecting S = B minimizes the control input norm |«|| at
steady state. If u; does not satisfy Eq. (23), the steady-state control
distribution will also depend on W;. This is undesirable because it
makes the role of the design parameter W, unclear.

Design Examples

Let us now apply the proposed method to two different design
examples to see what dynamic control allocation can offer and how
to select the tuning variables.

Actuator Dynamics

One application of dynamic control allocation is to account for ac-
tuator dynamics. Actuator dynamics can be an obstacle to perform-
ing control allocation because most allocation schemes—including
the one proposed in this paper—assume a static relationship be-
tween the actuator commands and the resulting total control effort
[see Eq. (11)]. Disregarding these dynamics in cases when one or
several of the actuators has a low bandwidth can deteriorate the
overall system behavior and possibly even lead to instability.

A previously proposed strategy is to modify the natural actuator
dynamics, using feedback or feedforward compensation, or a com-
bination of the two, to effectively increase the actuator bandwidth.
This has proven to work well in several applications.?*~2° However,
there are situations when this is not practically feasible solution. In
this section we consider one such example and show that combining

Uy 5 uf v
s5+2 >
U 0 uf
1
™ S0

Control UC‘L Actuator

allocation precomp.
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this type of compensation with dynamic control allocation can give
better results.

Consider the system depicted in Fig. 2, with two actuators whose
outputs u{ and u4 produce a total control effort of

v =2uf +uj = Bu“, B=[2 1] (26)
The actuators have first-order dynamics, and their bandwidths are
2 and 10 rad/s, respectively. Thus, the first actuator is slow but
effective, whereas the second one is fast but less effective. The
actuator position limits are given by |u{| <1, [u5| <2.

Assume now that the dynamics of the second actuator are fast
enough to be disregarded for the application in mind, but not the
dynamics of the first actuator. As just discussed, this can be resolved
by precompensating the first actuator command with the inverse of
the present dynamics (time discretized) times the desired actuator
transfer function, which we select to be the same as for the fast
actuator. Figure 3 shows the overall system structure. Now that both
actuators have a bandwidth of 10 rad/s, the same is true for the total
transfer function from v to v®.

Figure 4a shows the response to a smoothed step in the virtual
control command, v, when a static control allocator is used [u; =0,
Wy=1, W, =0, and W, =1 in Eqgs. (12)] and the sampling time is
T =0.02 s. Both actuator outputs satisfy the position constraints,
and the produced control effort v* (Fig. 4c) responds as expected
to the command. However, in a practical situation there might be
additional constraints that make this an undesirable solution. For
example, if the actuators are electrical motors the large position
error in the first actuator response can lead to an input voltage that
is infeasible.

To account for the difference in bandwidth in a more suitable
way, let us design a dynamic control allocator that uses both
actuators to produce the low-frequency part of the total control
demand, but only the fast actuator for the high-frequency part.
This can be accomplished by selecting the tuning parameters in

Static allocation

~
-
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o

-
W

-

e
L

> 051
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Fig. 4 Simulation results for static and dynamic allocation: ———, com-
manded values, and ——, actual values.
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Fig. 3 Overall system configuration.



1032 HARKEGARD

Egs. (12) as

ug(t) = B'o(1), W, = diag(1, 1)

W, = diag(12, 0), W, =1 (27)
The precompensation of the first actuator command is still necessary
in order to smoothly merge the two actuator responses. The overall
discrete time transfer functions from the virtual control command v
to the actuator commands u are shown in Fig. 5. Figure 4b shows the
resulting step response. Initially, the fast actuator is used to produce
most of the control effort, but after about 3 s the actuator commands
have converged to the desired static distribution, which is the same
as before, u(t) = B'v(¢). Thus, without affecting the static control
distribution between the actuators the transient distribution has been
designed to better account for the difference in actuator bandwidth.
Figure 6 shows the response when v =3 is commanded. This
choice makes the desired steady-state distribution u, infeasible. As
seen from the figure, the algorithm responds by utilizing the second
actuator more to compensate for the saturated first actuator.

Multivariable Flight Control
Let us now consider a flight control example. The purpose of
the example is to show that it is straightforward to apply dynamic

Control distribution

o
=
(] 4
©
2
z
o
(8] 4
=
-y (w/o precomp.) N
- L AN 4
40 — Y, o
107 107" 10° 10' 107 10°

Frequency (rad/sec)

Fig. 5 Transfer functions from v to u with dynamic allocation.
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— 2
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Fig. 6 Control-allocation results for v=3: ———, commanded values,
and ——, actual values.

control allocation also in a multivariable case and to illustrate the
benefits of using control allocation in general.

The ADMIRE model,”” developed by the Swedish Defence
Research Agency (FOI), is used for simulation. ADMIRE is a
MATLAB®/Simulink-based model of a small single-engine fighter
aircraft with a delta-canard configuration and includes actuator dy-
namics and nonlinear aerodynamics. The existing baseline control
system is used to compute the aerodynamic moment coefficients
M (x, upgm) to be produced in roll, pitch, and yaw (see Fig. 7). Be-
cause the baseline control system does not take actuator constraints
into account, U aqy Might be infeasible. Given M, the control alloca-
tor solves Egs. (12) for the commanded control surface deflections u.

The model parameters B and c¢ in Eq. (10) are recomputed at
each sampling instant by linearizing M (x, u) around the current
state vector and the current control surface position vector. In the
ADMIRE model the sampling time is 7 = 0.02 s. The constrained
least-squares problem (12) is solved at each sampling instant using
the weighted least-squares active set solver from Ref. 20.

The control input consists of the commanded deflections for the
canard wings u;, the right elevons u,, the left elevons u3, and the
rudder u,. The actuator position and rate constraints in Eq. (5) are
given by

Smin = (=55 =30 —-30 -30)7-(n/180)rad  (28)

Smax = (25 30 30 30)" - (m/180) rad (29)

e = (50 150 150 100)” - (r/180) rad/s  (30)

At trimmed flight at Mach 0.4, 1000 m, the control effectiveness
matrix, containing the partial derivatives of the aerodynamic mo-
ment coefficients in roll C;, pitch C,,, and yaw C,, with respect to
the control inputs, is given by

0 -9.0 9.0 2.7
19.7 —-224 -224 0

0 -3.3 33 =8.0

B=10"%x rad™! (31

from which it can be seen, for example, that the elevons are the most
effective actuators for producing rolling moment, whereas the rud-
der provides good yaw control, as expected. This is the B matrix used
in the design and analysis of the control allocation filter that follows.

Let us now consider the requirements regarding the control dis-
tribution. At trimmed flight, it is beneficial not to deflect the canards
at all to achieve low drag. We therefore select the steady-state dis-
tribution u; as the solution to

min [|u||
subject to Bu;, =v and us1 =0 (32
which yields

0 0 0
) = So() s -50 -22 -17 (33)
s ) = 1), =

! v 50 —22 17
4.1 0 —11.2

During maneuvering, corresponding to higher frequencies of v,
we seek a distribution that splits the pitch command between the

Control reallocation
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Fig. 7 Overview of the closed-loop system used for simulation.
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Fig. 8 Dynamic control-allocation transfer functions from v (moment
coefficients) to u (control surface commands).
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canards and the elevons. Further, because the elevons have a higher
rate limit than the rudder we put a higher rate penalty on the rudder.
Selecting

W, = diag(2,2,2,2) (34)
W, = diag(8, 10, 10, 20) (35)

and using theorem 1 yields the control allocation filter

u(t) = Fu(t — T) + Gv(?) (36)
where
59 4.1 41 0
P10 26 1.8 18 0 @
= X
26 1.8 18 0
0 0 0 0
0 1.8 0
G G ES— -50 —-14 -17 18
m=0HES=L 50 14 17 (38)
4.1 0 -112

in the nonsaturated case. The eigenvalues of F are given by
AMF)=0,0,0,0.95 (39)

which is in agreement with theorem 2. Note that the number of
nonzero eigenvalues (one) is equal to the dimension of the nullspace
of B.

Canard wings

8, (deg)

Sre (deg)

Left elevons
\

5, (deg)

Sr (deg)

-30L . A

Time (s)

Fig. 9 Simulation results for dynamic control allocation (——) and for the baseline control system (——-).
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The frequency characteristics of the filter are illustrated in Fig. 8,
which shows a magnitude plot of the transfer functions from v to
u. Each transfer function has been weighted with its corresponding
entry in B to show the proportion of v that the actuator produces. As
desired, the steady-state gain is zero for the canards, whereas at fre-
quencies above 5 rad/s the pitch command is evenly distributed be-
tween the canards and the left and right elevons. In roll and yaw, the
control distribution does not depend on the frequency despite that the
rate penalty for the rudder was selected higher than for the elevons.
This is because effectively only two control options—rudder and
differential elevons—are available for lateral control. These con-
trols are therefore determined completely by the commands in roll
and yaw and are not affected by the choice of W, and W,.

The final tuning variable W,, which does not affect the solution
in the nonsaturated case, is selected as

W, = diag(1, 10, 1) (40)

This puts the highest priority on producing the pitch command
correctly.

Figure 9 shows the simulation results from a full pitch-up com-
mand followed by a full roll command. When dynamic control al-
location is used, the initial response of the canards and the elevons
to the pitch command are of about the same size, whereas at steady
state the canards are not used at all in accordance with the designed
frequency distributions.

Let us now compare the results from using dynamic control allo-
cation with those obtained by the baseline control system without
reallocation, also shown in Fig. 9. The response to the pitch com-
mand at ¢t = 1s is virtually the same in both cases. Although the
control surface position plots differ slightly, the same aerodynamic
moment is produced in both cases. When the roll command is ap-
plied at r = 3 s, the left elevons saturate in both cases. Whereas the
baseline control system does not take this into account, the control
allocator responds by redistributing the control effect to the remain-
ing three actuators. This gives a faster reduction of the pitch rate and
a smaller undershoot. In fact, investigations show that with control
allocation the virtual control demand (11) is satisfied at all times
except just after 3 and 5 s, where the roll and yaw commands cannot
be produced exactly.

Conclusions

In this paper a new method for dynamic control allocation has
been presented. Dynamic control allocation offers an extra degree of
freedom compared to static control allocation in that the distribution
of control effort among the actuators need not be the same for all
frequencies. One area of use is compensating for actuator dynamics,
as illustrated in one of the design examples.

When no actuators saturate, the control allocator becomes a stable
linear filter whose frequency characteristics are decided by tuning
variables selected by the user. The problem formulation guarantees
that the different transfer functions are complementary, which makes
it easy to apply the method also in a multivariable case.

Further, because the allocation problem is posed as a quadratic
program it is straightforward to consider actuator position and rate
constraints in order to achieve redistribution of the control effort
when one actuator saturates and to perform command limiting when
the control demand cannot be satisfied.
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